Phase-Space Methods for Fermions

نویسندگان

  • Philippe Corboz
  • Joel F. Corney
  • J. F. Corney
چکیده

Phase-space representations first arose from the attempt to describe quantum mechanics in terms of distributions over classical variables [1]. For example, Wigner introduced a function of phase-space variables W(x, p) that would classically correspond to a joint-probability distribution: an integration over x gives the marginal distribution for p and vice-versa. However in quantum mechanics, such a function is not guaranteed to be positive; Wigner interpreted this feature as a quantum correction to classical statistical mechanics [2]. Besides providing insight into the quantum-classical correspondence, phasespace distributions lead to powerful calculation tools. Where they can be interpreted as true probability distributions, the phase-space functions can be sampled with stochastic trajectories, leading to efficient calculations of quantum dynamics or equilibrium states (see also Chapters ??, ??, ??, ?? ??).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian phase-space representations for fermions

We introduce a positive phase-space representation for fermions, using the most general possible multimode Gaussian operator basis. The representation generalizes previous bosonic quantum phase-space methods to Fermi systems. We derive equivalences between quantum and stochastic moments, as well as operator correspondences that map quantum operator evolution onto stochastic processes in phase s...

متن کامل

Non-relativistic Fermions, Coadjoint Orbits of W ∞ and String Field Theory at C = 1

We apply the method of coadjoint orbits of W∞-algebra to the problem of non-relativistic fermions in one dimension. This leads to a geometric formulation of the quantum theory in terms of the quantum phase space distribution of the fermi fluid. The action has an infinite series expansion in the string coupling, which to leading order reduces to the previously discussed geometric action for the ...

متن کامل

Quantum phase-space simulations of fermions and bosons

We introduce a unified Gaussian quantum operator representation for fermions and bosons. The representation extends existing phase-space methods to Fermi systems as well as the important case of Fermi–Bose mixtures. It enables simulations of the dynamics and thermal equilibrium states of many-body quantum systems from first principles. As an example, we numerically calculate finite-temperature ...

متن کامل

Vibration Induced Non-adiabatic Geometric Phase and Energy Uncertainty of Fermions in Graphene

Abstract. We investigate geometric phase of fermion states under relative vibrations of two sublattices in graphene by solving time-dependent Schödinger equation using Floquet scheme. In a period of vibration the fermions acquire different geometric phases depending on their momenta. There are two regions in the momentum space: the adiabatic region where the geometric phase can be approximated ...

متن کامل

Gaussian operator bases for correlated fermions

We formulate a general multi-mode Gaussian operator basis for fermions, to enable a positive phase-space representation of correlated Fermi states. The Gaussian basis extends existing bosonic phase-space methods to Fermi systems and thus allows first-principles dynamical or equilibrium calculations in quantum many-body Fermi systems. We prove the completeness of the basis and derive differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011